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1 Quadratic Forms and the Friedrichs Extension Theorem

1.1 Obtaining self-adjoint operators from quadratic forms

Last time, we said that a nonnegative, symmetric quadratic form is closed if when u,, SN
for u,, € D(q), then u € D(q) and q(u, —u) — 0. We checked that ¢ is closable if and only

if when u, % 0, q(un) — 0.

Theorem 1.1. Let q be a nonnegative, symmetric, quadratic form. Assume that D(q) is
dense and that q is closed. Then there exists a unique self-adjoint operator </ such that
D(<7) C D(q) and q(u,v) = (Fu,v) for allu € D(«/),v € D(q). Also, D(</) is a core
for q in the sense that D(</) is dense in Hy.

Example 1.1. Let q(u) = [ |v/|* + V|u*dz, where V € LY(T;R) and D(q) = H(T).
Then there exists a unique self-adjoint operator P = —9? + V such that D(P) C H' and
q(u,v) = (Pu,v).

Proof. Let (z,y), = q(z,y) + (z,y) for x,y € D(q). Then Hy is a Hilbert space with
respect to this scalar product. Then ||z|, > ||z|| for all z € H,, so for any u € H, the
linear form H, — C sending v — (v, u) is continuous. By the Riesz representation theorem,
there is a unique u* € Hy such that (v, u) = (v,u")y . We get a linear map K : H — H,
sending u — u* such that (v,u) = (v, Ju), for all v € Hy and u € H.

We claim that J is a bounded, self-adjoint operator on H. If y,x € H,

(Jy,x) = (Jy, Ja), = (Ju, Jy), = (Jo,y) = (y, Jx) .

So J is symmetric. By the closed graph theorem, J € L(H, H). Moreover, J is injective:
If Jo =0, then (y,z) = (y, Ja), = 0 for all y € H,. But H, is dense in H, so z = 0.
Write

H =kerJ ® Ran J* = Ran J.

So Ran J is dense and contained in H,. Define & : D(«/) = RanJ by &z = J 'z —x. We

have J~! is self-adjoint: J~! is symmetric, and if (z,y) are such that <J_1z,x> = (z,v),
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where 2z = Jw, then (w,z) = (Jw,y) = (w,Jy). So x € D(&), and y = J 'z. (D() is
dense in H,.)
Finally, & corresponds to the quadratic form g:

<.CU, y>q = <x7 J71y> )

q(m,y)z(x,y>q—<x,y>:<:L‘,,5zfy>, yED(ﬂ)ax€D<Q)' O

1.2 The Friedrichs extension theorem

In the previous theorem, we don’t have much control over the domain of the self-adjoint
operator 7. Here is a frequently encountered use of the theorem.

Theorem 1.2 (Friedrichs extension). Let S be a symmetric, densely defined operator
D(S) — H such that S is bounded below: (Su,u) > —C|ul|? for every u € D(S). Let
the quadratic form q be given by D(q) = D(S), q(u) = (Su,u). Then q is closable. The
self-adjoint operator associated to q, the Friedrichs extension of S, is also bounded below.

Remark 1.1. The Friedrichs extension theorem can give a different result compared to if
we just closed the operator S.

Remark 1.2. Let ¢ > 0 be closed. Then ¢(u,
where D(&/) = {v € H, : 3f € H s.t. q(u,v)
D(7) 2 D(S).

v) = (u, ) for v € D(&/) and u € D(q),
= (u, f) Yu € D(q)}. So in the theorem,

Proof. We can assume that S > 0. We only need to show that ¢ is closable. Let u,, € D(5)

be such that u,, — 0 in H and q(u, — tm,) LM% 0. We want to show that q(upn) — 0.
We have

q(un) < lq(un — wm, un)| + |q(um, un)|

< 42— ) g2 (1) + [, S|

For all £ > 0, there exists an N such that ¢(u,, — uy,) < e when n,m > N. So
q(un) < Y22 (up) + [(tm, Sun)| Vn,m > N.

Leting m — oo, we get
q(up) <e  Vn>N.

So ¢ is closable. 0



Example 1.2 (The Dirichlet realization of —A). Let 2 C R" be open and bounded, and
let S =—A with D(S) = C§°(2) (S > 0). The Friedrichs extension is associated with the
closure of the quadratic form

alu) = (Su,u) = [

(—Au)u = / \Vu|? dz.
Q Q

Next time, we will see that in this case, D(g) is the closure of C§° in the topology of H'(f2).
This is usually called H}(Q2) (but is not all of H(12)).
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