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1 Quadratic Forms and the Friedrichs Extension Theorem

1.1 Obtaining self-adjoint operators from quadratic forms

Last time, we said that a nonnegative, symmetric quadratic form is closed if when un
q−→ u

for un ∈ D(q), then u ∈ D(q) and q(un−u)→ 0. We checked that q is closable if and only

if when un
q−→ 0, q(un)→ 0.

Theorem 1.1. Let q be a nonnegative, symmetric, quadratic form. Assume that D(q) is
dense and that q is closed. Then there exists a unique self-adjoint operator A such that
D(A ) ⊆ D(q) and q(u, v) = 〈A u, v〉 for all u ∈ D(A ), v ∈ D(q). Also, D(A ) is a core
for q in the sense that D(A ) is dense in Hq.

Example 1.1. Let q(u) =
∫
|u′|2 + V |u|2 dx, where V ∈ L1(T;R) and D(q) = H1(T).

Then there exists a unique self-adjoint operator P = −∂2
x + V such that D(P ) ⊆ H1 and

q(u, v) = 〈Pu, v〉.

Proof. Let 〈x, y〉q := q(x, y) + 〈x, y〉 for x, y ∈ D(q). Then Hq is a Hilbert space with
respect to this scalar product. Then ‖x‖q ≥ ‖x‖ for all x ∈ Hq, so for any u ∈ H, the
linear form Hq → C sending v 7→ 〈v, u〉 is continuous. By the Riesz representation theorem,
there is a unique u∗ ∈ Hq such that 〈v, u〉 = 〈v, u∗〉Hq

. We get a linear map K : H → Hq

sending u 7→ u∗ such that 〈v, u〉 = 〈v, Ju〉q for all v ∈ Hq and u ∈ H.
We claim that J is a bounded, self-adjoint operator on H. If y, x ∈ H,

〈Jy, x〉 = 〈Jy, Jx〉q = 〈Jx, Jy〉q = 〈Jx, y〉 = 〈y, Jx〉 .

So J is symmetric. By the closed graph theorem, J ∈ L(H,H). Moreover, J is injective:
If Jx = 0, then 〈y, x〉 = 〈y, Jx〉q = 0 for all y ∈ Hq. But Hq is dense in H, so x = 0.

Write
H = ker J ⊕ Ran J∗ = Ran J.

So Ran J is dense and contained in Hq. Define A : D(A ) = Ran J by A x = J−1x−x. We
have J−1 is self-adjoint: J−1 is symmetric, and if (x, y) are such that

〈
J−1z, x

〉
= 〈z, y〉,
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where z = Jw, then 〈w, x〉 = 〈Jw, y〉 = 〈w, Jy〉. So x ∈ D(A ), and y = J−1x. (D(A ) is
dense in Hq.)

Finally, A corresponds to the quadratic form q:

〈x, y〉q =
〈
x, J−1y

〉
,

so
q(x, y) = 〈x, y〉q − 〈x, y〉 = 〈x,A y〉 , y ∈ D(A ), x ∈ D(q).

1.2 The Friedrichs extension theorem

In the previous theorem, we don’t have much control over the domain of the self-adjoint
operator A . Here is a frequently encountered use of the theorem.

Theorem 1.2 (Friedrichs extension). Let S be a symmetric, densely defined operator
D(S) → H such that S is bounded below: 〈Su, u〉 ≥ −C‖u‖2 for every u ∈ D(S). Let
the quadratic form q be given by D(q) = D(S), q(u) = 〈Su, u〉. Then q is closable. The
self-adjoint operator associated to q, the Friedrichs extension of S, is also bounded below.

Remark 1.1. The Friedrichs extension theorem can give a different result compared to if
we just closed the operator S.

Remark 1.2. Let q ≥ 0 be closed. Then q(u, v) = 〈u,A v〉 for v ∈ D(A ) and u ∈ D(q),
where D(A ) = {v ∈ Hq : ∃f ∈ H s.t. q(u, v) = 〈u, f〉 ∀u ∈ D(q)}. So in the theorem,
D(A ) ⊇ D(S).

Proof. We can assume that S ≥ 0. We only need to show that q is closable. Let un ∈ D(S)

be such that un → 0 in H and q(un − um)
n,m→∞−−−−−→ 0. We want to show that q(un) → 0.

We have

q(un) ≤ |q(un − um, un)|+ |q(um, un)|
C-S
≤ q1/2(un − um)q1/2(un) + |〈um, Sun〉|.

For all ε > 0, there exists an N such that q(un − um) ≤ ε when n,m ≥ N . So

q(un) ≤ ε1/2q1/2(un) + |〈um, Sun〉| ∀n,m ≥ N.

Leting m→∞, we get
q(un) ≤ ε ∀n ≥ N.

So q is closable.
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Example 1.2 (The Dirichlet realization of −∆). Let Ω ⊆ Rn be open and bounded, and
let S = −∆ with D(S) = C∞0 (Ω) (S ≥ 0). The Friedrichs extension is associated with the
closure of the quadratic form

q(u) = 〈Su, u〉 =

∫
Ω

(−∆u)u =

∫
Ω
|∇u|2 dx.

Next time, we will see that in this case, D(q) is the closure of C∞0 in the topology of H1(Ω).
This is usually called H1

0 (Ω) (but is not all of H1(Ω)).
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